Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.646
Filtrar
1.
Biochemistry (Mosc) ; 89(Suppl 1): S180-S204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621750

RESUMO

In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.


Assuntos
Metais , Estresse Oxidativo , Metais/química , Metais/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional
2.
Protein Sci ; 33(5): e4971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591647

RESUMO

As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.


Assuntos
Estruturas Metalorgânicas , Proteínas , Proteínas/genética , Proteínas/química , Metais/química , Cristalização
3.
Langmuir ; 40(12): 6094-6106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470353

RESUMO

Rational design of peptides has become a powerful tool to produce self-assembled nanostructures with the ability to catalyze different chemical reactions, paving the way to develop minimalistic enzyme-like nanomaterials. Catalytic amyloid-like assemblies have emerged among the most versatile and active, but they often require additional factors for activity. Elucidating how these factors influence the structure and activity is key for the design. Here, we showed that biologically relevant metal ions can guide and modulate the self-assembly of a small peptide into diverse amyloid architectures. The morphology and catalytic activity of the resulting fibrils were tuned by the specific metal ion decorating the surface, whereas X-ray structural analysis of the amyloids showed ion-dependent shape sizes. Molecular dynamics simulations showed that the metals can strongly affect the local conformational space, which can trigger major rearrangements of the fibrils. Our results demonstrate that the conformational landscape of catalytic amyloids is broad and tunable by external factors, which can be critical for future design strategies.


Assuntos
Amiloide , Peptídeos , Amiloide/química , Peptídeos/química , Metais/química , Proteínas Amiloidogênicas , Íons
4.
J Am Chem Soc ; 146(14): 9801-9810, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551407

RESUMO

The sequence-controlled assembly of nucleic acids and amino acids into well-defined superstructures constitutes one of the most revolutionary technologies in modern science. The elaboration of such superstructures from carbohydrates, however, remains elusive and largely unexplored on account of their intrinsic constitutional and configurational complexity, not to mention their inherent conformational flexibility. Here, we report the bottom-up assembly of two classes of hierarchical superstructures that are formed from a highly flexible cyclo-oligosaccharide─namely, cyclofructan-6 (CF-6). The formation of coordinative bonds between the oxygen atoms of CF-6 and alkali metal cations (i) locks a myriad of flexible conformations of CF-6 into a few rigid conformations, (ii) bridges adjacent CF-6 ligands, and (iii) gives rise to the multiple-level assembly of three extended frameworks. The hierarchical superstructures present in these frameworks have been shown to modulate their nanomechanical properties. This research highlights the unique opportunities of constructing convoluted superstructures from carbohydrates and should encourage future endeavors in this underinvestigated field of science.


Assuntos
Carboidratos , Metais , Metais/química , Carboidratos/química , Conformação Molecular , Aminoácidos
5.
N Biotechnol ; 81: 33-42, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38493996

RESUMO

We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.


Assuntos
Complexos de Coordenação , Maleimidas , Polímeros , Polímeros/química , Compostos de Sulfidrila/química , Peptídeos/química , Metais/química , Quelantes/química , Anticorpos
6.
J Inorg Biochem ; 255: 112540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552361

RESUMO

N-(3-(dimethylamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide (ML324, HL) is a potent inhibitor of the iron-containing histone demethylase KDM4, a recognized potential target of cancer therapeutics. Herein, we report the proton dissociation and complex formation processes of ML324 with essential metal ions such as Fe(II), Fe(III), Cu(II) and Zn(II) using UV-visible, fluorescence, electron paramagnetic resonance and 1H NMR spectroscopic methods. The electrochemical behaviour of the copper and iron complexes was characterized by cyclic voltammetry and spectroelectrochemistry. The solid phase structure of ML324 analysed by X-ray crystallography is also provided. Based on the solution equilibrium data, ML324 is present in solution in H2L+ form with a protonated dimethylammonium moiety at pH 7.4, and this (N,O) donor bearing ligand forms mono and bis complexes with all the studied metal ions and the tris-ligand species is also observed with Fe(III). At pH 7.4 the metal binding ability of ML324 follows the order: Fe(II) < Zn(II) < Cu(II) < Fe(III). Complexation with iron resulted in a negative redox potential (E'1/2 = -145 mV vs. NHE), further suggesting that the ligand has a preference for Fe(III) over Fe(II). ML324 was tested for its anticancer activity in chemosensitive and resistant human cancer cells overexpressing the efflux pump P-glycoprotein. ML324 exerted similar activity in all tested cells (IC50 = 1.9-3.6 µM). Co-incubation and complexation of the compound with Cu(II) and Zn(II) had no impact on the cytotoxicity of ML324, whereas Fe(III) decreased the toxicity in a concentration-dependent manner, and this effect was more pronounced in the multidrug resistant cells.


Assuntos
Cobre , Compostos Férricos , Humanos , Cobre/química , Compostos Férricos/química , Ligantes , Metais/química , Ferro/química , Íons , Prótons , Compostos Ferrosos , Benzamidas
7.
Micron ; 180: 103614, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457947

RESUMO

In this manuscript, we explore the potential of studying metal residues in cut marks generated by copper and bronze knives. The method was developed in the forensic sciences for use with modern metals in order to identify microscopic particles of metal tools on bone surfaces. However, the study of residues in archaeological materials can be challenging due to the ways in which the bone remains may have been manipulated, both in the past and in more recent times. Using a scanning electron microscope (SEM), we detected microscopic fragments of bronze and copper knives along with contamination both inside and outside of the cut marks made by those knives. Copper and bronze residues were identified embedded in the bone inside the incisions and, in two cases, they left greenish stains caused by metal oxidation. In contrast, modern contamination of undetermined origin was found unattached to the bone and had a chemical composition not compatible with that of the knives. The amount of residue was influenced by the quantity of soft tissue between the bone and the knife during the butchering tasks. Bone cooking does not seem to influence the preservation of the residues. We anticipate that the approach used in this first exploratory study will emerge as a promising method for identifying the use of metal tools in archaeological bone remains.


Assuntos
Cobre , Comportamento de Utilização de Ferramentas , Microscopia , Metais/química , Osso e Ossos
8.
Biomacromolecules ; 25(3): 2016-2023, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38362872

RESUMO

Porous framework materials are highly useful for catalysis, adsorption, and separations. Though they are usually made from inorganic and organic building blocks, recently, folded peptides have been utilized for constructing frameworks, opening up an enormous structure-space for exploration. These peptides assemble in a metal-free fashion using π-stacking, H-bonding, dispersion forces, and the hydrophobic effect. Manipulation of pore-defining H-bonding residues is known to generate new topologies, but the impact of mutations in the hydrophobic packing region facing away from the pores is less obvious. To explore their effects, we synthesized variants of peptide frameworks with mutations in the hydrophobic packing positions and found by single-crystal X-ray crystallography (SC-XRD) that they induce significant changes to the framework pore structure. These structural changes are driven by a need to maximize van der Waals interactions of the nonpolar groups, which are achieved by various mechanisms including helix twisting, chain flipping, chain offsetting, and desymmetrization. Even subtle changes to the van der Waals interface, such as the introduction of a methyl group or isomeric replacement, result in significant pore restructuring. This study shows that the dispersion interactions upholding a peptide material are a rich area for structural engineering.


Assuntos
Metais , Peptídeos , Metais/química , Cristalografia por Raios X , Peptídeos/genética , Mutação
9.
Inorg Chem ; 63(9): 4176-4184, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38387064

RESUMO

Photoxenobactin E (1) is a natural product with an unusual thiocarboxylic acid terminus recently isolated from an entomopathogenic bacterium. The biosynthetic gene cluster associated with photoxenobactin E, and other reported derivatives, is very similar to that of piscibactin, the siderophore responsible for the iron uptake among bacteria of the Vibrionaceae family, including potential human pathogens. Here, the reisolation of 1 from the fish pathogen Vibrio anguillarum RV22 cultured under iron deprivation, its ability to chelate Ga(III), and the full NMR spectroscopic characterization of the Ga(III)-photoxenobactin E complex are presented. Our results show that Ga(III)-photoxenobactin E in solution exists in a thiol-thione tautomeric equilibrium, where Ga(III) is coordinated through the sulfur (thiol form) or oxygen (thione form) atoms of the thiocarboxylate group. This report represents the first NMR study of the chemical exchange between the thiol and thione forms associated with thiocarboxylate-Ga(III) coordination, including the kinetics of the interconversion process associated with this tautomeric exchange. These findings show significant implications for ligand design as they illustrate the potential of the thiocarboxylate group as a versatile donor for hard metal ions such as Ga(III).


Assuntos
Metais , Tionas , Animais , Humanos , Metais/química , Ferro/química , Sideróforos/química , Compostos de Sulfidrila
10.
Chemosphere ; 352: 141470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367877

RESUMO

A novel fluorometric chemical sensor (PY-2TH) based on 2-thiohydantoin (2TH) in conjugation with pyrene (PY) was designed by facile one-pot Knoevenagel condensation reaction and explored for the sensitive and selective detection of Hg2+ ion in solution and solid state methods. Different analytical techniques like NMR and LC-MS concomitantly confirmed the structure of PY-2TH. Absorption and emission studies demonstrate positive solvatochromic effects indicating intramolecular charge transfer in polar solvents. PY-2TH exhibits unprecedented selectivity for detecting Hg2+ ions in tetrahydrofuran (THF) through turn-OFF fluorescence with 90% decrease in the emission intensity with a limit of detection (LOD) of ∼4.4 ppb. The mechanistic investigation through NMR and optical studies confirm the formation of a 2:1 complex between PY-2TH and Hg2+. Thin films of PY-2TH exhibits the J-aggregate formation in the solid state leading to a shift in the emission towards the near-infrared region. Further, we have demonstrated the applicability of PY-2TH for detection of Hg2+ ions and fluorescence imaging in live Zebrafish larvae and the toxicological effects are explored. Cytotoxic evaluation on Zebrafish larval cells revealed that PY-2TH is found to be non-toxic. Detailed analysis demonstrate the potential of PY-2TH for ultra-sensitive Hg2+ ion detection and removal in aqueous environments, highlighting its applicability for identification of metal contamination in live organisms and environmental toxicity.


Assuntos
Mercúrio , Peixe-Zebra , Animais , Mercúrio/análise , Metais/química , Íons/química , Pirenos/química
11.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396717

RESUMO

The 3d transition metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes, supported by anions of sterically demanding ß-diketones, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3), were synthesized and evaluated for their antitumor activity. To assess the biological effects of substituents on phenyl moieties, we also synthesized and investigated the analogous metal(II) complexes of the anion of the less bulky 1,3-diphenylpropane-1,3-dione (HLPh) ligand. The compounds [Cu(LCF3)2], [Cu(LMes)2] and ([Zn(LMes)2]) were characterized by X-ray crystallography. The [Cu(LCF3)2] crystallizes with an apical molecule of solvent (THF) and features a rare square pyramidal geometry at the Cu(II) center. The copper(II) and zinc(II) complexes of diketonate ligands, derived from the deprotonated 1,3-dimesitylpropane-1,3-dione (HLMes), adopt a square planar or a tetrahedral geometry at the metal, respectively. We evaluated the antitumor properties of the newly synthesized (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes against a series of human tumor cell lines derived from different solid tumors. Except for iron derivatives, cellular studies revealed noteworthy antitumor properties, even towards cancer cells endowed with poor sensitivity to the reference drug cisplatin.


Assuntos
Complexos de Coordenação , Cobre , Humanos , Cobre/química , Metais/química , Zinco/química , Ferro/química , Compostos Ferrosos , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X , Estrutura Molecular
12.
Water Res ; 252: 121229, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324989

RESUMO

Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.


Assuntos
Carbono , Poluentes Químicos da Água , Ibuprofeno , Metais/química , Oxirredução , Água , Eletrodos , Poluentes Químicos da Água/química
13.
Chem Biodivers ; 21(4): e202301861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367267

RESUMO

The paper is focused on biological activity and theoretical study of the structure and properties of a new azo derivative of ß-diketones and its complexes with some metals. The aim of our work was to study the structure and properties of the newly synthesized compound as well as to theoretically determine the possibility of complex formation with the Cu(II) or Co(II) ions. A compound with the same substituents R1=R2=CH3 was chosen for the study. A synthesized azo compound based on 4-amino antipyrine and its complexes with Cu(II), Co(II) in solution and solid phase is reported. The structures of these compounds have been testified by X-ray, IR and  NMR spectroscopy. The combined experimental and theoretical approach was used. To study the structure and properties of the synthesized compound, as well as its possible complex formation with the Cu(II), quantum-chemical calculations were carried out the 6-31G basis set and the electron density functional theory (DFT) method. These 3-(1-phenyl-2,3-dimethyl-pyrazolone-5) azopentadione-2,4 (PDPA) with Cu(II) and Co(II) complexes had effective inhibition against butyrylcholinesterase and acetylcholinesterase. IC50 values were found as 19.03, 3.64 µM for AChE and 28.47, 8.01 µM for BChE, respectively. Cholinesterase inhibitors work to slow down the acetylcholine's deterioration.


Assuntos
Butirilcolinesterase , Complexos de Coordenação , Butirilcolinesterase/química , Acetilcolinesterase/química , Metais/química , Complexos de Coordenação/química , Modelos Teóricos , Simulação de Acoplamento Molecular
14.
Anal Chem ; 96(3): 1268-1274, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38193766

RESUMO

RNA-cleaving DNAzymes have emerged as a promising tool for metal ion detection. Achieving spatiotemporal control over their catalytic activity is essential for understanding the role of metal ions in various biological processes. While photochemical and endogenous stimuli-responsive approaches have shown potential for controlled metal ion imaging using DNAzymes, limitations such as photocytotoxicity, poor tissue penetration, or off-target activation have hindered their application for safe and precise detection of metal ions in vivo. We herein report a chemically inducible DNAzyme in which the catalytic core is modified to contain chemical caging groups at the selected backbone sites through systematic screening. This inducible DNAzyme exhibits minimal leakage of catalytic activity and can be reactivated by small molecule selenocysteines, which effectively remove the caging groups and restore the activity of DNAzyme. Benefiting from these findings, we designed a fluorogenic chemically inducible DNAzyme sensor for controlled imaging of metal ions with tunable activity and high selectivity in live cells and in vivo. This chemically inducible DNAzyme design expands the toolbox for controlling DNAzyme activity and can be easily adapted to detect other metal ions in vivo by changing the DNAzyme module, offering opportunities for precise biomedical diagnosis.


Assuntos
DNA Catalítico , DNA Catalítico/química , Metais/química , Íons , RNA/química , Diagnóstico por Imagem
15.
J Am Chem Soc ; 146(3): 2102-2112, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38225538

RESUMO

Recent therapeutic strategies suggest that small peptides can act as aggregation inhibitors of monomeric amyloid-ß (Αß) by inducing structural rearrangements upon complexation. However, characterizing the binding events in such dynamic and transient noncovalent complexes, especially in the presence of natively occurring metal ions, remains a challenge. Here, we deploy a combined transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) approach to characterize the structure of mass- and charge-selected Aß complexes with Cu(II) ions (a quencher) and a potential aggregation inhibitor, a small neuropeptide named leucine enkephalin (LE). We show conformational changes of monomeric Αß species upon Cu(II)-binding, indicating an uncoiled N-terminus and a close interaction between the C-terminus and the central hydrophobic region. Furthermore, we introduce LE labeled at the N-terminus with a metal-chelating agent, nitrilotriacetic acid (NTA). This allows us to employ tmFRET to probe the binding even in low-abundance and transient Aß-inhibitor-metal ion complexes. Complementary intramolecular distance and global shape information from tmFRET and native IM-MS, respectively, confirmed Cu(II) displacement toward the N-terminus of Αß, which discloses the binding region and the inhibitor's orientation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Elementos de Transição , Ligantes , Peptídeos beta-Amiloides/química , Metais/química , Íons , Cobre/química
16.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279261

RESUMO

Protein tyrosine phosphatases (PTPs) of the polymerase and histidinol phosphatase (PHP) superfamily with characteristic phosphatase activity dependent on divalent metal ions are found in many Gram-positive bacteria. Although members of this family are co-purified with metal ions, they still require the exogenous supply of metal ions for full activation. However, the specific roles these metal ions play during catalysis are yet to be well understood. Here, we report the metal ion requirement for phosphatase activities of S. aureus Cap8C and L. rhamnosus Wzb. AlphaFold-predicted structures of the two PTPs suggest that they are members of the PHP family. Like other PHP phosphatases, the two enzymes have a catalytic preference for Mn2+, Co2+ and Ni2+ ions. Cap8C and Wzb show an unusual thermophilic property with optimum activities over 75 °C. Consistent with this model, the activity-temperature profiles of the two enzymes are dependent on the divalent metal ion activating the enzyme.


Assuntos
Proteínas Tirosina Fosfatases , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Bactérias/metabolismo , Metais/química , Íons
17.
J Environ Manage ; 352: 120021, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38183916

RESUMO

The global response to lithium scarcity is overstretched, and it is imperative to explore a green process to sustainably and selectively recover lithium from spent lithium-ion battery (LIB) cathodes. This work investigates the distinct leaching behaviors between lithium and transition metals in pure formic acid and the auxiliary effect of acetic acid as a solvent in the leaching reaction. A formic acid-acetic acid (FA-AA) synergistic system was constructed to selectively recycle 96.81% of lithium from spent LIB cathodes by regulating the conditions of the reaction environment to inhibit the leaching of non-target metals. Meanwhile, the transition metals generate carboxylate precipitates enriched in the leaching residue. The inhibition mechanism of manganese leaching by acetic acid and the leaching behavior of nickel or cobalt being precipitated after release was revealed by characterizations such as XPS, SEM, and FTIR. After the reaction, 90.50% of the acid can be recycled by distillation, and small amounts of the residual Li-containing concentrated solution are converted to battery-grade lithium carbonate by roasting and washing (91.62% recovery rate). This recycling process possesses four significant advantages: i) no additional chemicals are required, ii) the lithium sinking step is eliminated, iii) no waste liquid is discharged, and iv) there is the potential for profitability. Overall, this study provides a novel approach to the waste management technology of lithium batteries and sustainable recycling of lithium resources.


Assuntos
Formiatos , Lítio , Metais , Lítio/química , Metais/química , Reciclagem , Eletrodos , Fontes de Energia Elétrica , Ácido Acético
18.
Compr Rev Food Sci Food Saf ; 23(1): e13277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284607

RESUMO

In the past decade, food-derived metal-chelating peptides (MCPs) have attracted significant attention from researchers working towards the prevention of metal (viz., iron, zinc, and calcium) deficiency phenomenon by primarily inhibiting the precipitation of metals caused by the gastrointestinal environment and exogenous substances (including phytic and oxalic acids). However, for the improvement of limits of current knowledge foundations and future investigation directions of MCP or their derivatives, several review categories should be improved and emphasized. The species' uniqueness and differences in MCP productions highly contribute to the different values of chelating ability with particular metal ions, whereas comprehensive reviews of chelation characterization determined by various kinds of technique support different horizons for explaining the chelation and offer options for the selection of characterization methods. The reviews of chelation mechanism clearly demonstrate the involvement of potential groups and atoms in chelating metal ions. The discussions of digestive stability and absorption in various kinds of absorption model in vitro and in vivo as well as the theory of involved cellular absorption channels and pathways are systematically reviewed and highlighted compared with previous reports as well. Meanwhile, the chelation mechanism on the molecular docking level, the binding mechanism in amino acid identification level, the utilizations of everted rat gut sac model for absorption, and the involvement of cellular absorption channels and pathway are strongly recommended as novelty in this review. This review makes a novel contribution to the literature by the comprehensive prospects for the research and development of food-derived mineral supplements.


Assuntos
Quelantes , Metais , Ratos , Animais , Simulação de Acoplamento Molecular , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Metais/química , Peptídeos/química , Íons , Digestão
19.
Inorg Chem ; 63(5): 2401-2417, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38265361

RESUMO

As cancer cells exhibit an increased uptake of iron, targeting the interaction with iron has become a straightforward strategy in the fight against cancer. This work comprehensively characterizes the chemical properties of 6-methyl-3-{(2E)-2-[1-(2-pyridinyl)ethylidene]hydrazino}-5H-[1,2,4]triazino[5,6-b]indole (VLX600), a clinically investigated iron chelator, in solution. Its protonation processes, lipophilicity, and membrane permeability as well as its complexation with essential metal ions were investigated using UV-visible, electron paramagnetic resonance, and NMR spectroscopic and computational methods. Formation constants revealed the following order of metal binding affinity at pH 7.4: Cu(II) > Fe(II) > Zn(II). The structures of VLX600 (denoted as HL) and the coordination modes in its metal complexes [Cu(II)(LH)Cl2], [Cu(II)(L)(CH3OH)Cl], [Zn(II)(LH)Cl2], and [Fe(II)(LH)2](NO3)2 were elucidated by single-crystal X-ray diffraction. Redox properties of the iron complexes characterized by cyclic voltammetry showed strong preference of VLX600 toward Fe(II) over Fe(III). In vitro cytotoxicity of VLX600 was determined in six different human cancer cell lines, with IC50 values ranging from 0.039 to 0.51 µM. Premixing VLX600 with Fe(III), Zn(II), and Cu(II) salts in stoichiometric ratios had a rather little effect overall, thus neither potentiating nor abolishing cytotoxicity. Together, although clinically investigated as an iron chelator, this is the first comprehensive solution study of VLX600 and its interaction with physiologically essential metal ions.


Assuntos
Complexos de Coordenação , Compostos Férricos , Hidrazonas , Triazóis , Humanos , Cobre/farmacologia , Cobre/química , Metais/química , Ferro/química , Íons , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Quelantes de Ferro/farmacologia , Compostos Ferrosos
20.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175787

RESUMO

MOTIVATION: Understanding metal-protein interaction can provide structural and functional insights into cellular processes. As the number of protein sequences increases, developing fast yet precise computational approaches to predict and annotate metal-binding sites becomes imperative. Quick and resource-efficient pre-trained protein language model (pLM) embeddings have successfully predicted binding sites from protein sequences despite not using structural or evolutionary features (multiple sequence alignments). Using residue-level embeddings from the pLMs, we have developed a sequence-based method (M-Ionic) to identify metal-binding proteins and predict residues involved in metal binding. RESULTS: On independent validation of recent proteins, M-Ionic reports an area under the curve (AUROC) of 0.83 (recall = 84.6%) in distinguishing metal binding from non-binding proteins compared to AUROC of 0.74 (recall = 61.8%) of the next best method. In addition to comparable performance to the state-of-the-art method for identifying metal-binding residues (Ca2+, Mg2+, Mn2+, Zn2+), M-Ionic provides binding probabilities for six additional ions (i.e. Cu2+, Po43-, So42-, Fe2+, Fe3+, Co2+). We show that the pLM embedding of a single residue contains sufficient information about its neighbours to predict its binding properties. AVAILABILITY AND IMPLEMENTATION: M-Ionic can be used on your protein of interest using a Google Colab Notebook (https://bit.ly/40FrRbK). The GitHub repository (https://github.com/TeamSundar/m-ionic) contains all code and data.


Assuntos
Metais , Proteínas , Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Íons , Domínios Proteicos , Metais/química , Metais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...